Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stud Hist Philos Sci ; 93: 123-135, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35427838

RESUMEN

Why is it rational for scientists to pursue multiple models of a phenomenon at the same time? The literatures on mechanistic inquiry and scientific pursuit each develop answers to a version of this question which is rarely discussed by the other. The mechanistic literature suggests that scientists pursue different complementary models because each model provides detailed insights into different aspects of the phenomenon under investigation. The pursuit literature suggests that scientists pursue competing models because alternative models promise to solve outstanding empirical and conceptual problems. Looking into research on visual processing as a case study, we suggest an integrated account of why it is rational for scientists to pursue both complementary and competing models of the same mechanism in scientific practice.


Asunto(s)
Cognición , Percepción Visual
2.
Stud Hist Philos Sci ; 85: 101-113, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33966765

RESUMEN

In 1981, David Hubel and Torsten Wiesel received the Nobel Prize for their research on cortical columns-vertical bands of neurons with similar functional properties. This success led to the view that "cortical column" refers to the basic building block of the mammalian neocortex. Since the 1990s, however, critics questioned this building block picture of "cortical column" and debated whether this concept is useless and should be replaced with successor concepts. This paper inquires which experimental results after 1981 challenged the building block picture and whether these challenges warrant the elimination "cortical column" from neuroscientific discourse. I argue that the proliferation of experimental techniques led to a patchwork of locally adapted uses of the column concept. Each use refers to a different kind of cortical structure, rather than a neocortical building block. Once we acknowledge this diverse-kinds picture of "cortical column", the elimination of column concept becomes unnecessary. Rather, I suggest that "cortical column" has reached conceptual retirement: although it cannot be used to identify a neocortical building block, column research is still useful as a guide and cautionary tale for ongoing research. At the same time, neuroscientists should search for alternative concepts when studying the functional architecture of the neocortex. keywords: Cortical column, conceptual development, history of neuroscience, patchwork, eliminativism, conceptual retirement.


Asunto(s)
Neocórtex , Neurofisiología , Premio Nobel , Animales , Historia del Siglo XX , Mamíferos , Neocórtex/fisiología , Neuronas , Neurofisiología/historia
3.
Neuroimage ; 232: 117846, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33636345

RESUMEN

The gradient concept in neuroscience describes systematic and continuous progressions of features of cortical organization across the entire cortex. Recent multimodal studies revealed a macroscale gradient from primary sensory to transmodal association areas which is linked to increasing representational abstraction along the cortical hierarchy, and which is paralleled by microscale gradients of cytoarchitecture and gene expression profiles. Convergent or divergent evidence from these multimodal studies is then used to support inferences about the existence of one common or multiple scale-specific gradients of hierarchical information processing. This paper evaluates the validity of such inferences within the framework of multiscale modeling. In branches of physics and biology where multiscale modeling techniques are used, the simple averaging of microscale details can introduce errors in macroscale modeling if it ignores structures at the intermediate mesoscales of organization which affect system behavior. Conversely, information about mesoscale structures can be used to determine which microscale details are actually relevant to macroscale behavior. In this paper, I similarly argue that multiscale modeling of cortical gradients needs to take organization of mesoscale circuits into account if it affects the structure-function relation that the models describe. Information about these circuits provides crucial evidence for evaluating inferences from micro- and macroscale data to the role of cortical gradients in hierarchical information processing. My application of the multiscale modeling framework reveals that the gradient concept tracks multiple overlapping progressions of cortical properties, rather than one overall gradient of hierarchical information processing. I support this argument by proposing a mesoscale gradient of connectivity which describes architectural differences between granular and agranular circuits, and which helps us better understand the relation between neural connectivity and hierarchical information processing.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Modelos Neurológicos , Red Nerviosa/diagnóstico por imagen , Corteza Cerebral/fisiología , Humanos , Red Nerviosa/fisiología
4.
Sci Data ; 6: 180307, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30747913

RESUMEN

The dataset enables exploration of higher-order cognitive faculties, self-generated mental experience, and personality features in relation to the intrinsic functional architecture of the brain. We provide multimodal magnetic resonance imaging (MRI) data and a broad set of state and trait phenotypic assessments: mind-wandering, personality traits, and cognitive abilities. Specifically, 194 healthy participants (between 20 and 75 years of age) filled out 31 questionnaires, performed 7 tasks, and reported 4 probes of in-scanner mind-wandering. The scanning session included four 15.5-min resting-state functional MRI runs using a multiband EPI sequence and a hig h-resolution structural scan using a 3D MP2RAGE sequence. This dataset constitutes one part of the MPI-Leipzig Mind-Brain-Body database.


Asunto(s)
Cognición , Conectoma , Personalidad , Atención , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
5.
Prog Brain Res ; 233: 149-177, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28826511

RESUMEN

The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner.


Asunto(s)
Encéfalo/fisiología , Conectoma , Neuroanatomía , Investigación Biomédica , Humanos
6.
Hist Philos Life Sci ; 38(3): 2, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27325058

RESUMEN

The concept of the cortical column refers to vertical cell bands with similar response properties, which were initially observed by Vernon Mountcastle's mapping of single cell recordings in the cat somatic cortex. It has subsequently guided over 50 years of neuroscientific research, in which fundamental questions about the modularity of the cortex and basic principles of sensory information processing were empirically investigated. Nevertheless, the status of the column remains controversial today, as skeptical commentators proclaim that the vertical cell bands are a functionally insignificant by-product of ontogenetic development. This paper inquires how the column came to be viewed as an elementary unit of the cortex from Mountcastle's discovery in 1955 until David Hubel and Torsten Wiesel's reception of the Nobel Prize in 1981. I first argue that Mountcastle's vertical electrode recordings served as criteria for applying the column concept to electrophysiological data. In contrast to previous authors, I claim that this move from electrophysiological data to the phenomenon of columnar responses was concept-laden, but not theory-laden. In the second part of the paper, I argue that Mountcastle's criteria provided Hubel Wiesel with a conceptual outlook, i.e. it allowed them to anticipate columnar patterns in the cat and macaque visual cortex. I argue that in the late 1970s, this outlook only briefly took a form that one could call a 'theory' of the cerebral cortex, before new experimental techniques started to diversify column research. I end by showing how this account of early column research fits into a larger project that follows the conceptual development of the column into the present.


Asunto(s)
Neurofisiología/historia , Corteza Somatosensorial/fisiología , Animales , Gatos/fisiología , Historia del Siglo XX , Macaca mulatta/fisiología
7.
Front Hum Neurosci ; 8: 815, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25352801

RESUMEN

In contemporary human brain mapping, it is commonly assumed that the "mind is what the brain does". Based on that assumption, task-based imaging studies of the last three decades measured differences in brain activity that are thought to reflect the exercise of human mental capacities (e.g., perception, attention, memory). With the advancement of resting state studies, tractography and graph theory in the last decade, however, it became possible to study human brain connectivity without relying on cognitive tasks or constructs. It therefore is currently an open question whether the assumption that "the mind is what the brain does" is an indispensable working hypothesis in human brain mapping. This paper argues that the hypothesis is, in fact, dispensable. If it is dropped, researchers can "meet the brain on its own terms" by searching for new, more adequate concepts to describe human brain organization. Neuroscientists can establish such concepts by conducting exploratory experiments that do not test particular cognitive hypotheses. The paper provides a systematic account of exploratory neuroscientific research that would allow researchers to form new concepts and formulate general principles of brain connectivity, and to combine connectivity studies with manipulation methods to identify neural entities in the brain. These research strategies would be most fruitful if applied to the mesoscopic scale of neuronal assemblies, since the organizational principles at this scale are currently largely unknown. This could help researchers to link microscopic and macroscopic evidence to provide a more comprehensive understanding of the human brain. The paper concludes by comparing this account of exploratory neuroscientific experiments to recent proposals for large-scale, discovery-based studies of human brain connectivity.

8.
Front Neuroanat ; 6: 37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22973199

RESUMEN

While the past century of neuroscientific research has brought considerable progress in defining the boundaries of the human cerebral cortex, there are cases in which the demarcation of one area from another remains fuzzy. Despite the existence of clearly demarcated areas, examples of gradual transitions between areas are known since early cytoarchitectonic studies. Since multi-modal anatomical approaches and functional connectivity studies brought renewed attention to the topic, a better understanding of the theoretical and methodological implications of fuzzy boundaries in brain science can be conceptually useful. This article provides a preliminary conceptual framework to understand this problem by applying philosophical theories of vagueness to three levels of neuroanatomical research. For the first two levels (cytoarchitectonics and fMRI studies), vagueness will be distinguished from other forms of uncertainty, such as imprecise measurement or ambiguous causal sources of activation. The article proceeds to discuss the implications of these levels for the anatomical study of connectivity between cortical areas. There, vagueness gets imported into connectivity studies since the network structure is dependent on the parcellation scheme and thresholds have to be used to delineate functional boundaries. Functional connectivity may introduce an additional form of vagueness, as it is an organizational principle of the brain. The article concludes by discussing what steps are appropriate to define areal boundaries more precisely.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...